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SUMMARY 

, 0 3 7  
A differential cormction scheme is developed for the improvement of the 

approximate initial values of the adjoint variables so that a.n integral functional 
satisfyiag desired boundary conditions is optimized. Tbe adjoint variables 
satisfy a system of equations that are developed by applying the classical methods 
of the calculus of variations, properly extended, or Pontryagin's maximum principle. 
Approximate initial values for the adjoint variables are assumed. 

A general transition matrix is derived for the variations of the end con- 
ditions caused by the variations of the initial values of the adjoint variables, 
includbg the varhtions of the thxusting program and of the final time of the 
nominal optimum trajectory. An iteration scheme also is discussed for the con- 
vergence of the differential corrections to the desired end oonditianro. 
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INTRODUCTION 

In the problems of the calculus of variations, a system of partial differ- 
ential equations must be solved with specified boundary conditions. In addition 

inequalities of constraints, and the functional tbat should be optimized, there 
is a number of adjoint variables that sat* additional equations for the optimi- 
zation of the given system. These equations are derived by the application 6f 
the classical methods of the calculus of variations, properly extended, or from 
Pontryagin's maximum'principle [I], [Z] . 

4 
to the state and control variables that appear in tbe equations of motion, the 

m e n  some approximate values of the adjoint variables at the initial tihe 
to have been calculated, then, by numerical integration of the above systems of 
equations, an optimal solution is obtained that does not satisfy the desired end 
conditions. In this paper, a differential correction scheme is developed that will 
improve the approximate initial values of the adjoint variables so that the optimal * 

solution wi l l  satisfy the desired end conditione. A general transition xnatrjx is 
derived for the variatims of the end conditions caused by tbe variations of tha 
initial values of the adjoint variables, including the variations of the thrusting 
program of the nominal optimum trajectory and the variation of the final time. 
An iteration scheme also is presented for the convergence of the improved 
values of the adjoint variables to those of the optimum solution. 

First, the general equations of the state variables, used mostly as 
constraints, are given, together with the equations of the adjoint variables. 
Second, the variational equations for the above systems of equations are 

derived, and an application to the problem of minimizing the fuel of a space 
vehicle flying between two given boundary points is g i v h  a;s an example. 
Third, a differential correction scheme is derived for the improvement of 
the approximate initial values of the adjoint variables, and'an iteration scheme 
is presented for the convergence of the improved values of the adjoint variables, 
so that the optimum solution will satisfg the desired end conditions. Finally, 
conclusions and recommendations are presented far the application of this 
scheme to the actual'flight of space vehicles. 
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FUNDAMENTAL SYSTEM OF EQUATIONS 

State Variables 

The motion of a vehicle is characterized by the vector variable x(t) belonging - 
,to the vector space W at any instant of time t: It is assumed that this motion is 
controlled by a control vector u(t) . - 

The fundamental system of equations of state variables is given by 

where x(t) is an n4imensional piecewise differentiable state vector, and u(t) is 

an r-dimensional piecewise continuous control vector belonging to an arbitrary 
control region U that is independent of time. -me functions fi are defined for 
x € W and for u EU and are assumed to be continuous in the variables x(t) 
u(t) and continuously differentiable with respect to x(t). For a certain admissible 
control u(t), the motion of the vehicle - x(t) is uniquely determined. 

- - 

- - - 
- - 

The integral functional to be optimized is 

The necessary conditions for the optimum control vector - u(t) of Eq.(2) are 

and for free end time T. 
formulated for fixed boundary conditions of the state variables x(tJ and - 

Adjoint Variables 

For the optimum solution of Eq. (2), another sys8m.of equations is con- 

(t) = eo,y1,. . .yn) = @o, y) which is an (n+l)+Iimensioql continuoue vector, 
sidered. This system is linear and homogeneous in the adjoint variables - 

and is given by 

2 
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and the systems of Eqs. (1). (2), and (3) correspond to the Hamiltonian system 

a% "(t) = - 
*i 

= 3% axi (5) 

Pontryagin's maximum principle and transversality condition give, for 
optimal xO(n, tbr! function #(3(t),u(t), x(t) )-of u(t) be~~nging to U attains its 
maximum at the point _u(t), i. e. 

- 

I 
8 
I 
I 
II 
I 
I 
1 
I 

where the subscript k corresponds to the subscript of the state variables for 
which the terminal value s m  is free. For most of the engineering applications, 
we have yo # 0, which is normalized to yo = -1. 

(L) 
Ths Lagrangian multipliers A - (t) of the classical calculus of variations are 

related to the adjoint variables y(t) by the relationship 

If the time t appears explicitly in the system of functions f or fo, then it always 
can be transformed to an autonomous system by introducbg an auxiliary state 

variable that is defined by 

. 

%n+l(tJ El With x (tJ =to (8) n+l 
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Example 

For a space vehicle powered by a throttled engine and flying in the 
gravitational field of only one attracting body, the system of equations of the 
state variables, Le.  , EQ. (l), reduce13 to 

B - =p 
(9) . 

where - e isaunitvectorintbedirection~thethruet, anciu(t) isthecontrol 
variable belonging to the range 0 S u(t) 5 K. 

I 

For minimizing the fuel between x(tJ a'ad x(T) with free end time, the - - 
integral functional to be optimized, i.e., Eq. (2). becomes 

The system of the adjoint variables, Le. , Eq. (3), reduces t0 

I 
. - A&) = - E  

;,(t) =q &eJ. 
m 

4 



The maximum principle and tbe transversality conditions of Eq. (6) become 

where fo -a* - 

From Eq. (l), it is obvious that - -  x//e and that the switching functh '  for 
u = O  or u = K  iadefinedby 

' (q respectively. 
- 0  (min) whenu(t) = 

VARIATIONAL EQUATIONS 

In this section, the variational equations of the optimum trajectary of a 
space vehicle are derived. The formulation of these equations is required for 
the application of the differential correction scheme that is developed in the next 
section. 

The application of Pontryagin's maximum principle for the solution of 
optimal problems yields additional information for the synthesis of optimal 
controls. Making urn of this principle, the system of as.* (1) and (3) may be 
rewritten in the following general form. 

5 
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The variations of this system are obtained by 

A&) = F(t) As (t) -t Ah(t) - 
where the matrix F(t) and the vector A&@) are given by 

Transition Matrix 

The fundamental solution matrix for the homogeasous part of E q .  (l5), i.e. 

&(t) = F(t) @(t) 

with initial conditions O(t , td = 1 (unit matrix), ia the transition matrix O(t, t j  
of the system. From the properties of the fundamental solution matrix and the 
transition matrix @(tstJs we obtain 

0 

which is the solution of the non-homogeneaus Eq. (15);- 

In the example of the powered space vehicle flying in.& gravitational field 
of one attracting body, Eq. (17) reduces to 

N 
&PI =Q(TstJ +I @(T,tj) A&@# Atj 

j =1 

6 



where t. is the time at which the thrusting program of the optimum nominal trajec- 
tory with the approximate values of initial conditions r & j  switches "on" or tqoffft 
during the time interval to < tj < T, and Arm gives the deviations of the nominal 
end conditions from the desired end conditione, i. e. 

1 - 
- 

f (tj- Q - 
- 1  ect,, 

A 

Because the boundary conditioll of the staa variables at the initial time to 

aze given, we have Ax@J f 0, and E q .  (18) becomes (see Fig. 1) - 

or 

where X = X(T, tJ,  and Xu) = X(T, tj) . 

7 
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From Eq. (21), we get 

j=l 

and 

(23) . 
j=l 

Thrust- Program 

In  the^ formulation of the variational equations of the optimum nominal , 
trajectory, the time variation At of the optimum thnreting prograzp has been 1 
included where t. is the time at which the thrust switchem tlontl or llc@ and the 

1 
switching function of the nominal trajectory ie zero, i.e., SGj) = 0. The time 
variation At. is calculated from the variation of the switching function &(t +At ) , 
for which 

I 5 j  

S(t. +At.) + AS&. + A t )  = 0 
1 3  3 5 

From the linear expansion of Eq. (24) we get 

(tj) At. =-- A= (tj + At.) I ar - I 

(24) 

as Because AT (t + At.) a A+) + Ai e.) At and - A2 (t.) = 0, Eq. (25) 1 1 I 1 1  a_r 1 

(25) 

becomes 

as hj) Atj a - ar - AZGj) 

Expanding the variation Ar(t.) 
I 

L 

from Eq.  PO), we get 

8 



and, in tenns of the variations Ay (t& it becomes 

From Eq. (13) for the switching function So, we find that 

1x1 77 -Yo 
S@) =y - 

C 

W j '  Ix 1 - = ( 0 ,  0 ,  0 ,  0, 0, 0,  - -} 2 
aX(tj) m 

DIFFERENTIAL CORRECTION SCHEME 

'Correction Scheme 

In this section, a differential correction scheme is developed for the im- 
provement of the approximate initial values of the adjoint variables so that the 
optimum solution of the problem canbe found. The variations of the nominal 
optimum$rajecbry of the space vehicle, calculated for the approximate initial 
values of the adjoint variables, have been derived previously. 

9 



Making use of Eqs. (17), we solve for Ar@J if we know the variation - 
LsT) at the terminal time T. In the example of the powered space vehicle we 
derived Eqs. (22) and (23) for the variations of A x 0  and AyT) caused by the 
variations of the adjoint variables Amcfd at the initial time to and the Variations 

*At. at the time t. of the thrusting program, which correspands to the optimum 
nominal trajectory for the approximate adjoint variables. 

- 

1 3 

Free End Time 

In the case of free end time T, a variation in the terminal time also is 
taken into consideration, and, making use of Eqe. (29), we find that 

b y 0  = CStl Ay Ctd + $ n A T  

Separating the seventh row of Eqs. (31) and (32), we get 

(33) 

(34) 

where Eqs. (33) and (34) are of the form 

[6 X 1 ] =  [ 6 X 7 ]  [ 7 X l ]  + [ S X l ] [ l X l ]  

[l x 1 1 =  [ 1 X 7 ]  [ 7 x 1 ]  + [ 1 x 1 ] [ 1 x 1 3  

A 

respectively, [ r ] represents the first six rows of [r ] ; &d 0, represents the 
seventh row of Cnl . 

For the solution of the system of Eqs. (33) and (34) for Ay(tJ and AT from 
the deviations A G O  and Ay7(T) = 0, we need one more relationship, and this is 
obtained from Eq. (l2), Le. 

7 

j =1 

10 
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~aking  the variation of %(t) at time to, we get 
7 7 

fjFJ Nj(tJ + 1 Yj@J AfjFJ - AfoPJ = 0 

j=l j=l 

Because Af.(t = 0 and Afo@J = 0 if the variation of theswitching function I d  
AS@d does not change the sign of S e d ,  Eq. (36) becomes 

7 1 f.(t I O  )Ayj(tJ = 0 (37) 
j=l 

or 

(38) -v@J A"@J +&Fa ax@$ - - "" Ay,FJ = 0 C 

Thus, combining Eqs. (33), (34), and (38), we get eight equations with eight . 
unknown variations that are given by 

A 3 T )  

0 i 0 

Solving for Ay(td and AT, we find that 

- J  

(3 9) 

Iteration Scheme 

For the calculation of the optimum trajectory of a space vehicle, the 

differential correction scheme described in this section is applied, and the 
variation of the adjoint vector &(tJ at the initialtime to, as well as the varia- 

11 



tion of the final time AT, are derived to match the desired conditions at the final 

time T in space. Making use of the corrected adjoint variables yl(tJ =y(tJ +Ax(tJs 
a new optimum nominal trajectory is computed by integrating the system of equations 
of the state and adjoint variables, i.e., Eqs. (9) and (11) by making use of Ea. (13) 
for the optimum thrusting program as descrbed previously. 
correction scheme has been derived for linear variations of bigzlly nonlinear equations, 
it is expected that there still will be a discrepancy between the desired and the new 
computed values of the end conditions 6z1(T1), where T1 = T + 11T. 

Because the differential 

In general, successive iterations generate corrections Ayk(tJ to the adjoint 
variables at time to from A%(T$ - such that 

which, in turn, gives end conditions with deviations A-I-C+~(T~+~) from their de- 

siredvalues, and 

‘ 

k 
Tk+l = T + 1 ATi 

i=O 

This iteration scheme converges to the desired end conditions of the state 

vector, provided that the deviations are within the linear range. Departure from 
the linear range will be indicated when the deviations of the computed mminal end 
conditions from the desired end conditions AYC~(T~[ are comparable to or exceed 
the deviations Ax(T). - In this case, each step of the iteration scheme described 
above contains a sub-iteration carried out on a parameter $k introduced 88 a 
factor multiplying the deviations A-%(Tk>. Thus 

- 

From A&*(Tk), we obtain the correction AZ*(tJ, which is added toyk*(tJ 
for the k estimate of the adjoint variables at time to. The sub-iteration consists 
of the determination of avalue of yk (o<yk’l) such that the deviations A-%+r(Tk+l) 
computed from the corrected adjoint variables, i.e. 

th 

12 
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are comparable, to or less than the deviations, A-x(T$. This procedure is continued 
until the linear range is reached for which yk = 1 and the iteration scheme converges 
to the desired end conditions. 

It should be noted that the same procedure is followed when parameters other 
than the state variables are specified as end conditions. Of cmrse, these para- 
meters mu& be expressible as functions of the state variables. 

CONCLUSIONS AND RECOMMENDATIONS 

A differential correction has been developed for the improvement of the 
appraximate values of the adjoint variables so that the optimal solution of the prob- 
lems of the calculus of variations is obtained. The mathematical analysis for the 
differential correction scheme for the optimum trajectory of a space vehicle with 
minimum fuel consumption between fixed boundary conditions has been presented. 
The method developed relies on the variations of the no- optimum trajectory 
of the space vehicle calculated for the approximate initial values of the adjoint 
variables, which are assumed to be given. Techniques for the calculation of these 
approximate values are not considered in this report. 

A general transition matrix has been derived for the variations of the ehd 
conditions caused by €he variations of the initial values of the adjoint variables, 
including the variations of the thrusting program of the nominal optimum trajectory 
and the variation of the final time. An iteration schemi also has been discussed 
for the convergence of the improved values of the adjoint variables to those of the 
optimum problem satisfying the desired end conditions. Xn"addition, a metbod for 
the case of variations beyond the linear range has been outlined. 

This program will be highly useful for the determination of optimum space 
missions and for optimum orbit transfer for intercept and rendezvous of space 

13 



8 
I 
8 
8 
1 
8 
8 
8 
1 
1 
B 
8 

vehicles as well as for optimum navigation and guidance of a space vehicle. 
Further work in this area is readily suggested. First, techniques should be 
developed for the approximate initial values of the adjoint variables that are 
used for the optimum nominal trajectory. Second, this correction scheme . 
could be extended readily to optimum problems with more general types of- 
end conditions than those considered in this report. Finally, a more general 
differential correction scheme is required for the optimum pursuit of a powered 
spacecraft, which would involve a statistical-control scheme for the probability 
law of a randomly moving point. 

APPEND= 

VARIATIONAL PARAMETERS 

For the calculation of variations of the optimum space trajectories, there 
is a general matrix introduced that relates the variations of the state and adjoint 
variables at time t to those at time to. This matrix, called the general transition 
matrix, requires the computation of the partial derivatives of the state and adjoint 
variables at two different times, i. e. , to and T, and relates their linear vari- 
ations at these times, including the optimum changes of the thrusting program. 

When the thrust is "off, the system of equations for the adjoint variables 
is tladjointlt to the system of equations for the variations of the state variables, 
which, in this case, is homogeneous, and the transition matrix of the state variables 
is used for the calculations of the adjoint variables during the coasting interhls 
of time, i.e., ti<t<ti+l. 
variables X (ti+l, ti) is found from the corresponding Kepler problem, and it is 
expressed in closed form from the solution of this problem. 

In this case, the transition matrix of the state 
A 

The variations of the state variables and the values uf the adjoint variables 
for the coasting interval are given by [SI. 

14 
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and 

(45) 

The use of the conventional state variables - E&), which are position and velocity 
vectors R - and fi - in c a r t e s h  coordinates, has the dieadvantag e that all of their ele- 
merits have secular terms that vary rapidly with time. If, instead of the conventional 
state variables, other parameters are used as state variables, the resultant matrix 
might be simplified considerably. For example, consider the following parameters 
and their variations: 

Rotation of R - about 

Rotationof fi - about E 

Rotation of both R - and k - abaut - H 
Change in cos @,a), keeping v and 

Relative change in the semimajor axis &/a, 
keeping R - and &/v constant 

Relative change in the magnitude of the position 
vector (Ar/r), keeping R/r - and R/v - constant. 

A% 

Aa2 

Aa3 

Aa4 

Arr5 

constant 

&6 

The transition matrix corresponding to the above parameters, i.e. 

15 
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where some of the non-eero elements are listed as partials of the orbital para- 
meters and are given by Ref. [4 ] as 

I 16 



(57) 

. 

H x q  

p m = .  I 
H 
r 
- - 0 

i 

T 
P(t)-l = 

r - 
h2 

0 

0 

h 

and 

0 - 3 rv 

0 

- 2a ‘K 
3 -  r 

2a 

E 
r 
- 

2 

0 
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The relationship between the transition matrix %(t,tJ for the conventional 

is given by state variables -. ;(t) and 9 (t, td for the above set of parameters 

a f - ( c ~ h 6 - 1 )  + 1 a +1 . 
rO 

A 
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